Comparison of the $\pi^* + d\delta$ and $\pi^*/f(n^2)$ Methods for the Evaluation of Solvent Polarity Effect in Chemical Reactivity

Vojtěch Bekárek

Faculty of Science, Palacky University, 771 46 Olomouc, Czechoslovakia

 $\pi^* + d\delta$ and $\pi^*/f(n^2)$ formalisms are found to be of nearly the same effectiveness for the evaluation of solvent polarity effects on reaction rates and equilibria.

Two successful attempts have been made to improve applicability of the Kamlet–Taft solvent dipolarity–polarizability parameters π^* . Kamlet and Taft^{1, Z} introduced an additional variable polarizability term $d\delta$ while we proposed^{3,4} the improvement of the applicability of the π^* in chemical reactivity through dividing the π^* by Onsager's refractive index (*n*) function $f(n^2) = (n^2 - 1)/(2n^2 + 1)$. We thus introduced π^*_n parameters $[\pi^*_n = \pi^*/f(n^2)]$ which we have found to be more applicable than the original π^* for the evaluation of solvent polarity effects on reaction rate constants, equilibria, and even

Table 1. Solvent-dependent phenomena and solvents considered^a

Kinetics

- 1. Tri-n-propylamine with methyl iodide,⁶ 50 solvents 1, 2, 5—11, 13— 18, 20—22, 25, 30—33, 35—37, 41, 43, 44, 47, 50, 51, 53, 54, 58—60, 62, 63, 86, 89, 91—93, 96, 98, 131, 132, 135, 138
- 2. Thermal decomposition of t-butyl performate,⁷ 15 solvents 1, 2, 5, 6, 8, 9, 13–15, 21, 30–32, 35, 90
- 3. Solvolysis of butyl chloride at 298 K,⁸ 12 solvents n-pentane, 1, 7, 9, 14, 18, 23, 25, 28, 31, 32, 50
- 4. Auto-oxidation of styrene,⁹ 11 solvents 2, 6, 8, 14, 15, 31–33, 50, 60 5. Triethylamine with ethyl bromoacetate, ¹⁰ 22 solvents 2, 6, 8, 14, 16–
- 18, 20, 26, 28, 31, 32, 35, 37, 50, 53, 54, 58, 63, 89, 98, 131 6. Triethylamine with ethyl iodoacetate,¹⁰ 22 solvents as for system 5
- 7. Solvolysis of *p*-methoxyneophyl tosylate, ¹¹ 10 solvents 7, 11, 13, 18, 24, 25, 29, 32, 34, 50
- 8. 1,4-Diazabicyclo[2.2.2]octane with (2-chloroethyl)benzene,¹² 17 solvents 8, 9, 11, 13-15, 18, 25, 29, 31-33, 37, 41, 50, 63
- 9. 1,4-Diazabicyclo[2.2.2]octane with (2-bromethyl)benzene,¹² 19 solvents 4, 6, 8, 9, 11, 13–15, 17, 18, 25, 29, 31–33, 37, 41, 50, 63
- 10. 1,4-Diazabicyclo[2.2.2]octane with (2-iodoethyl)benzene,¹² 19 solvents as for system 9
- 11. Trimethylamine with *p*-nitrobenzyl chloride,¹³ 11 solvents 1, 7, 11, 14, 18, 30–32, 47, 50, 58
- 12. Thermolysis of α -chlorobenzyl methyl ether, ¹⁴ 7 solvents 6, 8, 15, 30, 31, 50, 56
- 13. Aniline with benzoyl chloride, ¹⁵ 23 solvents n-octane, 5-9, 11, 13-16, 18, 21, 23, 30-33, 35, 37, 41, 50, 53
- 14. Methyl phenyl sulphide with dimethyl sulphate at 60 °C,¹⁶ 12 solvents 6, 8, 9, 11, 14, 15, 17, 18, 32, 50, 56, 137
- 15. Methyl phenyl selenide with dimethyl sulphate at 60 °C,¹⁶ 12 solvents as for system 14
- 16. *p*-Aminobenzenethiyl free radical with styrene,¹⁷ 21 solvents 2, 3, 6, 8, 9, 11, 13, 14, 17, 20, 21, 24, 25, 29, 30, 37, 47, 48, 53, 60, 97

Equilibria

- 17. Free energy differences between *cis* and *trans*-isomers of 2-isopropyl-5-methoxy-1,3-dioxane,¹⁸ 13 solvents 1, 2, 6–8, 13, 14, 18, 21, 30, 31, 50, 53
- Free energy difference between *cis* and *trans*-isomers of 2-isopropyl-5-ethoxy-1,3-dioxane,¹⁸ 13 solvents as for system 17
- Free energy of the transition between E and Z conformers of methyl 2-fluorobenzoate, ¹⁹ 12 solvents 1, 2, 5, 6, 9, 14, 21, 29, 32, 43, 50, 56
- Free energy difference for mutarotation of N-(α-benzoylbenzylidene)-1-phenylethylamine,²⁰ 11 solvents 4—6, 8, 9, 14, 18, 30, 40, 50, 61

- 21. log (solubility of tetramethylammonium iodide) in aprotic solvents,²¹ 14 solvents 7, 11, 15, 16, 18, 20, 21, 25, 28, 29, 31, 32, 47, 50
- 22. log (solubility of tetraethylammonium iodide) in aprotic solvents,²¹
 18 solvents 7, 11, 14--16, 18, 20, 21, 25, 29, 31--33, 37, 44, 47, 50, 58
 23. log (solubility of nitromethane),²² 32 solvents 1-9, 11, 13--16, 18,
- 23. log (solubility of intrometiane), $^{-5}$ 32 solvents 1—9, 11, 13—16, 18, 21, 23—25, 27—30, 33, 35, 36, 41, 50, 58, 62, 97, n-decane
- 24. Free energy of transfer of $Et_4N^+I^-$ from methanol to other solvent, ²¹ 23 solvents 1, 2, 6, 7, 11, 14-16, 18, 20-22, 25, 28, 29, 31-33, 37, 44, 47, 50, 55
- 25. Octanol-water partition coefficients,²³ 57 solvents 1--3, 6--8, 10--16, 18, 20, 21, 23, 25, 26, 29, 30, 33, 35, 41, 43, 50, 52--54, 62, 64, 86, 97, 145, 146, 155, 226, 250, tetramethylsilane, neopentane, n-pentane, benzotrifluoride, cyclopentane, n-butane, fluorotrichloromethane, propane, n-propyl chloride, amphetamine, hexan-2-one, N-methylpiperidine, dimethylethylamine, n-propylamine, NN-diethylacetamide, trimethylamine, dimethyl ether, o-xylene, and ethylbenzene
- ^a Solvent numbers correspond to those of Kamlet and Taft.¹

Table 2. Comparison of the applicability of the $\pi^* + d\delta$ and π^*_n terms

System	n	d	R _{KT}	R _n	Remark
1	50	-0.086	0.982	0.984	Including CS_2 , d deter-
	49	-0.086	0.988		mined by Kamlet and Taft without CS ₂
2	15	-0.074	0.989	0.978	d determined by Kamlet
3	12	-0.246	0.987	0.988	and Taft
4	11	-0.183	0.985	0.992	
5	22	-0.090	0.959	0.966	
6	22	-0.073	0.960	0.975	
7	10	-0.102	0.965	0.988	
8	17	-0.144	0.961	0.980	
9	19	-0.155	0.981	0.988	
10	19	-0.165	0.983	0.980	
11	11	-0.228	0.948	0.939	
12	7	-0.320	0.923	0.962	
13	23	-0.311	0.960	0.950	Besides polarity terms basicity term also used
14	12	-0.200	0.971	0.939	-
15	12	-0.200	0.964	0.939	
16	21	-0.20	0.968	0.959	d determined by Kamlet
					and Taft, also basicity term used
17	13	-0.221	0.928	0.937	
18	13	-0.202	0.911	0.951	
19	12	-0.236	0.942	0.961	
20	11	-0.192	0.891	0.927	Besides polarity terms Hildebrand term used
21	14	-0.222	0.971	0.978	
22	18	-0.169	0.929	0.972	
23	32	-0.203	0.913	0.934	Besides polarity terms Hildebrand term used
24	23	-0.174	0.981	0.990	<i>d</i> determined by Kamlet and Taft
25	57	-0.40	0.988	0.985	d determined by Kamlet and Taft; besides polarity terms, also basicity and molar volume terms used

1426

some spectral properties which do not depend on excitation processes, *e.g.* e.s.r. hyperfine splitting constants and n.m.r. chemical shifts. Abboud *et al.*⁵ recently performed a comparison of the applicability of their $\pi^* + d\delta$ and our π_n^* for the evaluation of solvent effects on spectral properties and we would like to complete this comparison for chemical reactivity systems.

We carried out a correlation of solvent-induced changes of 25 kinetic and equilibrium parameters with above solvent parameters by equations (1) and (2). The studied properties (Y) as

$$Y = A + B(\pi^* + d\delta) \tag{1}$$

$$Y = A + B\pi_n^* \tag{2}$$

well as the solvents and sources of the data are given in Table 1. The numbering of the solvents is the same as used by Kamlet and Taft.¹

The comparison of the applicability of equations (1) and (2) is carried out by correlation coefficients in Table 2. In Table 2 n, d, and $R_{\rm KT}$ and $R_{\rm n}$ stand for the number of solvents, Kamlet–Taft polarizability coefficient, and correlation coefficients for correlations carried out by the equations (1) and (2), respectively. In the case of five systems equations (1) and (2) were extended for a basicity term (Kamlet–Taft β constant) (systems 13, 16, 25), Hildebrand's solubility parameter term (systems 20 and 23), and a molar volume term (system 25).

Comparison of the correlation coefficients shows that effectiveness of the both formalisms considered is, in the case of the systems studied, nearly the same regardless of the size of the polarizability parameter d.

References

1 M. J. Kamlet, J. L. M. Abboud, and R. W. Taft, Prog. Phys. Org. Chem., 1981, 13, 485.

- 2 R. W. Taft, J. L. M. Abboud, and M. J. Kamlet, J. Am. Chem. Soc., 1981, 103, 1080.
- 3 V. Bekárek, J. Chem. Soc., Perkin Trans. 2, 1983, 1293.
- 4 V. Bekárek, Collect. Czech. Chem. Commun., 1984, 49, 2332.
- 5 J. L. M. Abboud, R. W. Taft, and M. J. Kamlet, J. Chem. Soc., Perkin Trans. 2, 1985, 815.
- 6 C. Lassau and J. O. Jungers, Bull. Soc. Chim. Fr., 1968, 2678.
- 7 R. E. Pincock, J. Am. Chem. Soc., 1964, 86, 1820.
- 8 M. H. Abraham and R. J. Abraham, J. Chem. Soc., Perkin Trans. 2, 1974, 47.
- 9 J. A. Howard and K. W. Ingold, Can. J. Chem., 1964, 42, 1044.
- 10 Y. Drougard and D. Decrooq, Bull. Soc. Chim. Fr., 1969, 2972.
- 11 S. G. Smith, A. H. Fainberg, and S. Winstein, J. Am. Chem. Soc., 1961, 83, 618.
- 12 M. Auriel and E. Hoffmann, J. Am. Chem. Soc., 1975, 97, 7433.
- 13 M. H. Abraham, J. Chem. Soc. B, 1971, 299.
- 14 H. Kwart and P. A. Silver, J. Org. Chem., 1975, 40, 3019.
- 15 R. G. Makitra and Yu. N. Pirig, *Reakts. Sposobn. Org. Soedin.*, 1978, 15, 352.
- 16 E. Maccarone and G. Perrini, J. Chem. Soc., Perkin Trans. 2, 1983, 1605.
- 17 O. Ito and M. Matsuda, J. Am. Chem. Soc., 1982, 104, 568.
- 18 E. L. Eliel and O. Hofer, J. Am. Chem. Soc., 1973, 95, 8041.
- 19 Z. Fried, P. Fiedler, and O. Exner, Collect. Czech. Chem. Commun., 1980, 45, 1351.
- 20 Carmen Lopez-Mardomingo, R. Pérez-Ossorio, and J. Plumet, J. Chem. Res. (S), 1983, 150.
- 21 M. H. Abraham, J. Chem. Soc., Perkin Trans. 2, 1972, 1343.
- 22 L. Rohrschneider, Anal. Chem., 1973, 45, 265.
- 23 (a) C. Hansch and A. Leo, 'Substituent Constants for Correlation Analysis in Chemistry and Biology,' Wiley-Interscience, New York, 1979, (b) M. J. Kamlet, M. H. Abraham, R. M. Doherty, and R. W. Taft, J. Am. Chem. Soc., 1984, 106, 464.

Received 23rd September 1985; Paper 5/1645